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AblItract-Exact closed form inextensional bending solutions are developed for a class of shell triaquIar
elements in quadratic parametric representation; these elements may have positive. zero or neptive
Gaussian curvature. Previous exact closed form inextensional solutions of the equations of thin shell theory
are known. for non-zero Gaussian curvature. only for spherical surfaces.

The polynomial solutions are relevant to finite element design and provide illextensional bendiDa
behaviours with slowly varying curvature changes ready for use in patch test validation of any shell finitt
element.

1. INTRODUCTION
A study of the equations of first approximation sheD tbeory[I-3] reveals that the theory admits
four characteristic solution modes which correspond essentiaUy to rigid body movements,
momentless membrane stresses, inextensional bending and edge effects. In well designed sheDs,
the membrane mode usually produces the dominant fibre stresses with iDextensioDal bendina
making significant contributions only to the deformation state. Eclae effects decay rapidly away
from discontinuities and it is customary to consider them in isolation from the other modes. Of
the first mentioned modes, it is the problem of inextensional bending which has provided one of
the most difficult obstacles in developing a wholly satisfactory curved finite element within first
approximation shell theory [4, 5).

Closed form exact solutions for the displacements of inextensional bending in shell surfaces
with non-zero Gaussian curvature are known (to this author) only for spherical surfaces[6].
Thus, a primary objective is to develop such solutions covering a much wider raDp of surfaces
which may have positive, zero or negative Gaussian curvature. The polynomial form adopted
for the solutions is relevant to the techniques of finite element analysis and provides in.
extensional bending behaviours ready for use in patch test[4] validation of any shell finite
element. Indeed, a Fortran computer program which calculates displacements, rotations and
curvature changes from the cubic polynomial solutions is described elsewhere[7].

The technique of polynomial parametric representation of the rectangular cartesian coor·
dinates is widely employed in the finite element method to describe curved surfaces and/or
boundaries. When the rectangular cartesian components of displacement are also parametrically
represented by the same polynomials then the representation is called isoparametric[8,9].
While isoparametric representation admits exact recovery of the rigid body movements. it does
not provide an acceptable description of the bending of curved surfaces because its bending is
accompanied by middle surface strains which have significant magnitude and cannot be ignored.
In contrast, the bending solutions presented in the sequel correspond to zero middle surface
strain. They are derived by extending the polynomial degree of displacement representation for
a class of triangular elements with dOUbly curved shell surfaces which are parametrically
represented in terms of quadratic polynomials of the surface coordinates. The element class is
characterised by the planes of the quadratic arcs which define the sides, these planes intersect
along three parallel lines. The present purpose is adequately served by assuming that these
parallel lines are normal to the plane which passes through the vertices of the triangular element.
This assumption offers presentational simplification but is not essential to the method and form
of solution.

The analysis is embedded in the strain/displacement and curvature change/displacement

tCopyright © Controller HMSO. London 1981.
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equations of first approximation shell theory[I-3] and it is convenient to commence with a
statement of the relevant vector equations in terms of an arbitrary orthogonal system of
curvilinear surface coordinates. These equations form the basis for evaluation of the physical
quantities in any chosen direction and are then related to the equations of the oblique
curvilinear coordinate system belonging to the parametric representation. Particular equations
for the shell triangular element are derived prior to a study of the quality of the physical
quantities when they are described isoparametrically. Closed form exact polynomial solutions
to the inextensional bending problem are then presented with specimen numerical values; the
cubic polynomial solutions correspond to curvature changes which, although not generally
constant, are slowly varying for the shallow shell elements usually encountered in finite element
analysis.

2. GEOMETRY AND KINEMATICS IN ORTHOGONAL CURVILINEAR COORDINATES
Let X, Y, Z refer to a fixed right handed orthogonal cartesian coordinate system and denote

by vector r the position of a point on the middle surface of the thin walled shell so that

(2.1)

where '10 '2, '3 are unit vectors in the X, Y, Z directions respectively. Let the middle surface be
defined by orthogonal curvilinear coordinates ti, ti, see Fig. I, so that

X == X(~i, t2>, Y == Y(ti, t2>, Z == Z<tj, t2>·

Unit vectors Ii, Ii taIlIent respectively to the ti, ti directions are given by

1i

1~

(2.2)

(2.3)

11" -;;
~2, 2

Curvature ell...... and rotatiClll.

-n

-11" t'112. Z

Strain. and dI.pl.cement.

Fig. I. Kinematic quantities in the orthogonal curvilinear coordinate system on the middle surface of shell
triangular element.
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where the coefficients a;. ai of the first fundamental form are calculated from

The unit vector JI

, IarI ' IarIa.= aE:' a2= aEi' (2.4)

(2.5)

is perpendicular to the plane of ,; and 'i with direction such that the orthogonal vectors t;. ti. JI

form a right handed system. The radii R i. Ri of curvature of the middle surface along lines of
respectively constant Ei and E; are given by

(2.6)

while the radius Rb of torsion is

(2.7)

If 1/Rb =0 then the curvilinear coordinates Ei. Ei follow the lines of principal curvature of the
shell middle surface.

Let the displacement vector V be defined by

with

Ux = UxW. E2>. Uy= UyW. E2>. UZ = Uz(Ei. E2>· .

(2.8)

(2.9)

where Ux, UY• Uz are components of displacement in the orthogonal X. Y, Z directions
respectively. The displacement vector V is usually defined

V=U;t; +Ui'i+ WII (2.10)

where U;, Ui. Ware respectively components of displacement in the E;, Ei and surface normal
directions, these components may be calculated from

U;=V·t;. Ui=V·ti, W=V·II. (2.11)

The components Ell> En, Eb of direct and shear strain in the E;, Ei coordinate system are

(2.12)

The rotation vector ~ is introduced by

with

(2.13)

A".=_..!..av·1I
'P a; aE; • (2.14)
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and with rotation tPn about the surface normal

(2.15)

The components of curvature change are given by

(2.16)

When the strains E;h Eh, Eb in the shell middle surface are all zero then the equations of
compatibility provide the following relationships

(2.17)

where /(;10 /(12, /(b, /(21 are here the curvature changes of inextensional bending.

3. OBLIQUE CURVILINEAR COORDINATE SYSTEM
In the parametric representation employed in the sequel, the middle surface of the shell is

defined by curvilinear coordinates ~.. ~2 which are no longer orthogonal. Thus,

(3.1)

instead of eqn (2.2). It is therefore required to express the physical quantities of the orthogonal
coordinate system E;, Ei in terms of these oblique coordinates.

Unit vectors th t2 tangent to the ~.. E2 directions are given by

(3.2)

where the coefficients of the first fundamental form are calculated from

These unit vectors include an angle fJ, see Fig. 2, where

(3.3)

tc t2 =cos fJ,
It, x t21 =sin fJ.

(3.4)

The vector t; of the orthogonal coordinate system is taken to include an angle A with the vector
t ..

Since

tHI =cos A.

tj·t2 = cos fJ + A, 1
tHI =sin A,
t2·t2 =sin fJ +A,

(3.5)

(3.6)
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d(2' i,

-Wc::::;::"':~-- dt;, \',

Fig. 2. 0rtb0&0naI and oblique coordinate systems.

see Fig. 2, it follows that

, 1 ( . -Q- .~)
II=--:-"'Q 'lsm,.,+A-12SIDA,sm,.,

1 --
Ii = --:-"'Q( - II cos Q + A+'2 cos A),sm,., - ,.,

1
.. = --:-"'Q ('I X I:z)SID ,.,

(3.7)

where .. is the same vector as in eqn (2.S). It follows also that the rule for differentiation is

1 a 1 a
IX; a~1 I [ smPH -smA] !XI a~1

=sin 13 (3.8)
1 a 1 a

IXi a~i -cos 13 + A cos A 02 a~2

Quantities Ell' En, EI2 in the oblique ~" ~2 coordinate system are introduced by

(3.9)

These quantities may be termed "components of strain" since the strain of the middle surface is
completely defined in terms of them; they are related to the orthogonal components E;" En, Eb
through

EI' =s~213 (Ell sin213 + A+ En sin2A- 2EI2 sin Asin 13 + A)

1 2-- --
En =:::l'Q(EII cos 13 + A+ EnCos2A -2EI2COS Acos 13 + A)SID ,.,

Eb =~{- Ell sin 13 + Acos 13 + A- En sin Acos Asin ,.,

+ Elisin Acos 13 + A+ sin 13 + ACOsA)}

(3.10)

Note that Ell, En are true direct strains in the ~" ~2 directions, e.g. with A= 0, ,"/2-/3
respectively.

In like manner, quantities 4>10 4>2 may be introduced by

(3.11)
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which are related to the orthogonal components 4>;, 4>2 by

4>; =4>1 sin fJ + A- tP2 sin A, 4>2 =- 4>1 cos fJ + A+ 4>2 cos A.

The rotation 4>" of eqn (2.15) may alternatively be expressed by

and the rotation vector et of eqn (2.13) by

Quantities KI" K22, K12, K21 are introduced by

1 act 1 aet
- K22 =a2 a~2 • tIt K21 =a2 a~2 • t2,

which are related to the curvature changes of the orthogonal system through

Kit =~ (KII cos Asin fJ +A- K22 sin Acos fJ +Asm ,.,

+ KI2 sin fJ + Acos fJ + A- K21 sin Acos A),

1 ----
K21 = :;:r,; ( - KII sin Acos fJ + A+ K22 sin fJ + Acos Asm,.,

- KI2 sin fJ + Acos fJ + A+ K21 sin Acos A),

K;2- m:2fJ{(KII-K~sin Asin fJ +A + KI2 sinzfJ + A- K21 sin2A},

1 -- 2-- 2
K2t =~{- (KII- K~ cos Acos fJ + A- KI2COS fJ + A+ K21 cos A}.sm ,.,

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(4.1)

The quantities 10110 K22, K.2, K21 may be termed 'components of curvature change' since the
curvature changes experienced by the middle surface are completely defined in terms of them;
note in contrast with eqn (3.10), that KII' K22 are not true curvature changes in the ~" e2
directions.

4. EQUATIONS OF THE SHELL TRIANGULAR ELEMENT
Consideration is now given to doubly curved sheD triangular elements as described in the

Introduction and where the middle surface is parametric:ally represented by quadratic poly­
nomials in the oblique curvilinear coordinates e" ez. The six noded triangular element is
depicted in Fig. 3 with aU three vertices resting on the OXY plane; the origin of rectangular
cartesian coordinates X, Y, Z is located at node 5 with node 1 resting on the OX axis. The
element class is thus defined by the six nodal coordinates Xh X3, Y3, Zz, Z., Z6 with

x z=kx,+x3), Y2 =Y.=~Y3' )

X.=~X3' X5= Y. =Y5 ~ Y6 =Z. =Z3= Z5=O,

X6 =iX1•

Note, however, that both method and form of solution remain unchanged when the element
class is widened with ZIt Z3' Z5;f. O.

The oblique curvilinear coordinates e" e2 are shown in Fig. 4 with origin at node 5 so that,
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3

Y

3 IX"Y"OI

I X

IX •• O,Z.t' IX"O,Ot

Fig. 3. Shell triangular element with vertices resting on OXY plane.

on the surface of the triangular element,

side I is.defined by EI +E2 = 1, )
side 2 is defined by El =0,
side 3 is defined by €2 =O.

(4.2)

With nodes located at coordinate positions defined by eqn (4.1), the quadratic representation
requires that

x = Xltl +X,E2' ]
Y =Y,t2,

Z =4{Z2Elt2 +Z..e2(l- tl - E2l +Z6tl(l- tl - E2l}
(4.3)

and the vector eqn (2.1), which describes the middle surface of the sheD element, may now be

y

lid. 3

I ~2'O

(i, 0) 11,01

X, ~,

Fig, 4. Curvilinear coordinates of the quadratic parametric representation.
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Unit vectors t h t2, tangent respectively to the ~h ~2 directions, are determined by eqn (3.2),

with

a.2= X.2+ 16{ - 2Z6~1 + (Z2 - Z4 - Z6)~2 + Z6}2, )

al= xl+ y3
2+16{(Z2- Z4- Z6)~1-2Z4~2+Z4}2;

the trigonometric term cos f3 of eqn (3.4) is given by

(4.6)

cos f3 =tl't2

=_1_ [XIX3+ 16{ - 2Z6~1 + (Z2 - Z.. - Z6)~2 + Z6H(Z2 - Z4 - Z6)~1 - 2Z4~2 + Z4)]' (4.7)
ala2

In the sequel, it is required to evaluate physical quantities in orthogonal directions at the
sides of the triangular element. For this purpose, and typically for side I, introduce new
orthogonal cartesian coordinates X', Y' lying in the OXY plane

X' ={X -!<X. +X3)}L' +{Y -!<Y1+ Y3)}M',/
Y'= -{X -!<X. +X3)}M'+{Y -!<Y. +Y3)}L'

(4.8)

where, as in Fig. 5, the origin of the new coordinates is at (X2, Y2, 0) and OY' lies along the
straight line joining nodes 1 and 3; the direction cosines are

L' = - (YI ~ Y3), M' = (XI ~ X3) (4.9)

with distance /' between nodes 1 and 3 calculated from

(4.10)

It is necessary to introduce also orthogonal unit vectors ti tangential to the curvilinear
coordinate ~2 along the side and tl outwards pointing, as shown in Fig. 5, both vectors also

y

­t'1
X' U I 7'[' 3, x :fi

y' U I ,,/~S.d. 2 7
·y,lt2 SI"I~-

"I
Sid. 3 I

5 L~ +y/. Uy/, C~

" X'. Ux '

Fig. 5. Notation along sides of the shell triangular element.
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tangential to the shell surface. The origin of ~i is at the side node 2 with the vertices located at
Ei =±~. The relationship with coordinates E" E2 is

along side I El = ~ - Ei. E2 =~ +Ei, 1
along side 2 EI =O. E2 = ~ - Ei,
along side 3 El =!+ Ei, E2 =O.

The typical side 1 is described in terms of the new coordinates by

(4.12)

where ,i is unit vector parallel with the straight line joining nodes 1 and 3,

(4.13)

The unit tangent vector ti in the direction of Ei is

(4.14)

with coefficient of the first fundamental form

(4. IS)

Since

(4.16)

it foUows that

(4.17)

from eqn (3.7). This determines the angle A for the side; formulae useful in the evaluation of
trigonometric quantities cos f3 +A, cos A, sin f3 +A, sin Aare listed in Table 1 for each side the
triangular element. Components of displacement Ux" Uy. in the orthoaonal X', Y' directions
are given by

Ux'= UxL'+ UyM', I
Uy'= - UxM'+ UyL'.

Table I. Triaonometric functions iDvolviDa the anaIe .\ expressed for each side of the triaDpIar element

Ii. c"," rn cOil Ii" rn lill A .,2
2

.t
'2

I ,+ Ii" • I
~ ( .... ' ••2 COl .) .~ - 211\'2 COl •••~'=T lin • iiI <""I COl •• '2)

"2 "2 2

2 0 - Ii" • -I -~. 2
'2

] - lill • 0 co•• 1 2

".

(4.18)
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In this quadratic parametric representation, the strain components Ell' E22, ElZ of eqn (2.9)
may be written as foUows for the displacement vector U of eqn (2.8),

Ell =1. aU" 1=J,[X1aux +4{ -2Z6~1 +(Zz- Z4- Z6)~Z+ Z6} aUz ].
a, af. at afl aEt

E22=1. au· ,Z =A[x'j aux + Y'j aUy +4{(Zz- Z4- Z6)~t-2Z4~Z+Z4} aUzJ,
az aEz az aEz aEz aEz

E,z =!(1. au .tz +1. au .t,) (4.19)
2 al aE, az aEz

=_1_ [Xl aux + y'j auy +4{(Zz - Z4 - ZJEl- 2Z4Ez +Z4} auz
2a,az aEt aE, aEI

+XI aa~: +4{ - 2Z6EI +(Zz - Z4 - ZJEz +Z6} aa~: J.
These strain components satisfy a relationship

(4.20)

which involves oniy the displacement Uz ; this relationship is of significance in the sequel when
solving for inextensional bending. Formulae are listed in Table 2 which give the resolution of
these strains into orthOional components Eit, En, Eb acting at each side of the triangular
element, see Fig. 5; note in particular that the strain En acts in the direction of Ei along each
side. When the displacements of an arbitrary rigid body movement,

Ux = al + azY - aSZ'j
Uy =a'j-azX -a~,

Uz =a4+aSX +a6Y.

(4.21)

where at. ... , a6 are constants, are substituted into eqns (4.19) then all three strain components
are zero as is required; the representation of X, Y, Z in terms of the surface coordinates Eh Ez
is given by eqn (4.3). The special displacement form

Ux =a7X, Uy = a7Y, Uz =a7Z

is of interest because when substituted into eqns (4.19) it provides the strain condition

Ell =E22 =a7, EI2 =a7 cos f3,

Table 2. Strain components Eit. En. Eh for each side of the triangular element as shown in Fig. S

(4.22)

(4.23)

SI4e £h 1£22 ciz

I t 2 ~ Jella.<a. coa '-a2)'"':'f"::"'r. ell <"'1 cos , ·"2)IIi aiD'
I ( 2 2 )

ai do', + cZZ(-tl 1 + "2 COl 8)2 ::r '. 1°1" (:22(12'" 21: 12,° 1(12 • <22"2<"1 -"2 coa ,)

- 2el2(("~ ·.n coo , -"1"2(1. eoa
2,)}]

2
- <uH-"nl

2 ~ (C II +c-Z2 CO.2.-2CJ2 coe.) <22 oth<-<u e.. '·<'2)
81Q 8

) -:lr:- (ell co.
2,+ f: Z2 -2:£12 COl 8) <II ..~ a «II coa '-<'2)

un 8
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where use is made of eqns (4.5H4.7). Substitution of eqn (4.23) into Table 2 then shows that

(4.24)

this constant strain condition is accompanied by zero rotations 4>;, 4>i, 4>n as well as by zero
curvature changes K." Ki2' KI2' Ki" it is independent of the angle A.

It is impracticable to write down explicit expressions for the curvature change components
KI" K22' KI2, K2h see eqn (3.15), in this quadratic representation. Instead, a simpler concept of
arc curvature change, denoted KnA,is introduced and used in the sequel to assess the quality of
curvature change deformation. Typically for side 1, the vector eqn (4.12) describes a plane
quadratic arc with unit tangent vector ti given by eqn (4.14). The unit vector which lies in the
plane of this arc, the osculating plane, and which is nonnal to ti is

dti/ldtil 1 (8Z 1:." I )itA = - d€i d~i = ai 20;,;2'2 + I3t ). (4.25)

The sense of this vector itA corresponds with that of It as given by eqns (2.5) and (3.7). The
vector equation for displacements in the plane of the arc is

(4.26)

where Uy ' is expressed in terms of Ux and Uy by eqn (4.18); the rotation q,iA of the arc in its own
plane is

(4.27)

'see eqn (2.14). The arc curvature change lenA is therefo,re

(4.28)

see eqn (2.16). Since

(4.29)

the slope 4>iAO for inextensional deformation En =0 is, on making use of eqn (4.15),

(4.30)

with corresponding arc inextensional curvature change

(4.31)

The coefficient a 2is nearly constant for a side with shallow are, ai .... 1' see eqn (4.15), and "nAO
then tends to the same value of curvature change calculated according to Mushtari-Vlasov[lO]
shell theory. Care is required, however, if the concept of arc curvature change is used other
than in a qualitative sense.
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S. ISOPARAMETRIC REPRESENTATION OF THE DISPLACEMENTS
Suitable representation of the displacement components Ux, Uy, Uz of eqn (2.8) is

important when considering satisfactory applications to the finite element method. If these
components are represented isoparametrically by complete quadratics of the coordinates ~.. ~2,

where N'(~h ~~ are shape functions defined as

N I = ~1(2~1 -1), N, =4~2(1- ~1 - ~~, )

N2=4~1~2, Ns=(1- ~I - ~~(1- 2~1 - 2~~

N) = ~~2~2 - 1), N6 =4~1(1- ~I - ~~,

(5.1)

(5.2)

then recovery of six arbitrary rigid body movements is admitted, eqn (4.21), as well as twelve
separable states of combined strain and curvature change which include the special constant
strain condition expressed by eqns (4.22H4.24). Note that independent states of constant strain
E;h En, Eb are not admitted by this representation, see eqn (4.19) and Table 2.

The present purpose, however, is to demonstrate that the quadratic isoparametric represen­
tation of eqn (5.1) does not lead to a satisfactory description of curvature change, in­
dependently of middle surface strain, for curved shell elements. Examine the kinematics in the
plane of the arc formed typicaUy by side I, see Fig. 5. Components of displacement Uy ., Uz in
this plane are represented by, see eqns (4.9), (4.18), (5.1),

(5.3)

An equivalent form of representation, more convenient for the present purposes, is

(5.4)

where, see eqn (4.11),

y' =1'~2' z =Z~l- 4~2i.

Substitution of eqn (5.4) into eqn (4.29) gives

substitution into eqn (4.27) gives the in plane rotation q,2A of the arc as

(5.5)

(5.6)

(5.7)
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while substitution into eqn (4.28) gives the arc curvature chanle as

Coefficients bh Ch C2 are seen to control the rigid body movement of the arc in its own
plane, while the term with coefficient b2 provides a constant value of the strain En along the
side with zero rotation and curvature change, see eqns (4.22H4.24).

The term with coefficient b) descnbes a strain En which is antisymmetric in ti; this strain is
accompanied with an arc curvature change KkA, see eqn (5.8). Note here that a curvature
change K n" provides maximum fibre strain K n"h/2 where h is the wall thickness of the shell
element. For this term,

where R" is the radius of curvature of the are,

1 1 dt' 8Z I'-= 2.,." =--1r
R" Qi dei ai

(5.9)

(5.10)

on making substitutions from eqns (4.14) and (4.25). Now, because of the underlying Love­
Kirchhoff assumptions in fint approximation shell theory, it is not possible to calculate fibre
strain (or stress) to within a relative accuracy closer than h/R, see Koiter[1], with R any radius
of curvature or tonion of the reference surface. Equation (5.9) shows that the fibre strains from
the accompanying (and unwanted) curvature cban8e KkA of the coefficient b) in eqn (5.8) are
therefore of no consequence in the context of fibre strain accuracy.

This leaves available the term with coefficient C3 to describe the arc curvature change Kn"
but this is accompanied with unwanted middle surface strain, eqn (5.6), where

(5.11)

with the physical quantities evaluated at appropriate values of ei. For

(5.12)

see eqn (5.9), the angle (8Z7IR,,)If2 which is approximately subtended by the arc is somewhat
less than 0.330 for say h =0.04 and R" =10. In a more relaxed criterion,

(5.13)

the arc subtended angle can increase to about 1.60 for the same values of h and R". The
geometrical constraints are so severe that adequate description of independent curvature
change for a curved shell element is seen to require a form of representation for the
displacement components Ux, Uy, Uz which embodies inextensibility, Eil =En =Eb:s 0, of the
middle surface.

6. INEXTENSION AL BENDING IN TERMS OF CUBIC POLYNOMIALS
The components Ell, En, EI2 of eqn (3.9) completely define the state of middle surface strain

throughout the shell element. Inextensibility is therefore governed by the three partial differen­
tial equations of first degree in Ux, Uy, Uz which are obtained from eqn (4.19) by enforcing

(6.1)
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Solutions to these equations are souaht in the form

U 16 ( 2 2
X =XI a2~1 + a3~2+ a<4~1 + a5~1~2+ a'~2

+ a7~13 + aS~12~2 + a~l~l+ alO~l),

U X3 U 16 (b b 2 2
y = - Y3 X + Y3 3~Z+ <4~1 + b5~I~Z+ b'~2

+ b7~13+ bS~IZe2+ b~lel+ bloel),

Uz = 4Czel~z +4C<4eil- el - e21 +4C~I(l- ~I - e21,

where the Uz displacement is set to zero at the vertices of the triangular element, ie

Uz=O at nodes 1,3,5

see Figs. 3 and 4. An arbitrary rigid body movement parallel to the OXY plane,

(6.2)

(6.3)

(6.4)

see eqns (4.21) and (4.3). may be added to eqn (6.2) without afectiDa the curvature chaqes.
The twenty constants az. a3' •.. , alOt b3, b<4t ••• , blo and Cz, C<4t C, are determined by

substitutiq eqn (6.2) into eqn (4.19) to derive quadratic expressions for the strain quantities
alzflh alE'l2 and 2CllICll24!lz: equating these expressions to zero, eqn (6.1), provides eighteen
conditions and hence two inextensional bendiq solutions. The numerical results, given later,
indicate that these soIutioas correspond to slowly varyiq values of the curvature changes for
relatively shallow triaaauJar elements such as are encountered in finite element analysis. A
curved sheD can support only two, ie not three, such separable inextensional bending
behaviours because the compatibility condition, see eqn (2.17),

(6.5)

Table 3. Values of the physical quantities for specimen triangular element with positive Gaussian curvature

Siele N04e Ux Uy Uz .' "i. <h Ch,"z. <2UOI

I 0.5333 0 0 -5.752 -1.870 1.974 3.509 1.961
I 2 0.3000 -0.2"7 1.000 -2.309 -1.987 2.013 3.464 2.000

3 0.2667 -0.4619 0 1.132 -2••82 1.974 3.420 1.961

3 0.2667 -0.4619 0 1•• 32 -2.182 1.974 -3.420 1.961
2 4 0.2333 -0.2"7 1.000 -2.309 -1.987 2.013 -3.464 2.000

5 0 0 -5.752 -1.870 1.974 -3.509 1.961

5 0 0 0 4.620 4.051 -3.947 -0.0818 -3.922
3 6 0.2667 -0.2309 -2.000 4.619 3.974 -4.027 0 -4.000

I 0.5333 0 0 4.620 4.051 -3.947 0.0818 -3.922

Siele IlocIe Ux Uy Uz .' <ll <h ciZ·K 21 "2UOI

1 0 -0.3079 0 -1.223 -2.078 1.974 -1.111 1.961
I 2 0.3000 -0.2"7 1.000 -2.309 -1.987 2.013 -1.155 2.000

3 0.8000 -0.1540 0 -3.397 -1.974 1.974 -1.199 1.961

3 0.8000 -0.1540 0 3.397 1.974 -1.974 -1.199 -1.961
2 4 0.3000 -0.0192 -1.000 2.309 1.987 -2.013 -1.155 -2.000

5 0 0 1.223 2.078 -1.974 -1.111 -1.961

5 0 0 0 -2.355 0.1039 0 2.309 0
3 6 0 -0.1540 0 0 0 0 2.309 0

I 0 -0.3079 0 2.355 -0.1039 0 2.309 0

Modal coordinate., se. Fia 3. which have non-.ero valu•• are X•• 2. Xl • I. Y) • Ii. Z2 • Z4 • %, • 0.1.
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must be satisfied by curvature changes of inextensional bending, it is identically satisfied for flat
plates where Z2 =Z4 =Z" =O. This compatibility condition is reflected in the relationship given
by eqn (4.20) where, on making use of eqn (6.1),

(6.6)

A substitution from the solution form given in eqn (6.2) shows that the constants C2, C4, C6 must
satisfy the condition

(6.7)

The remaining seventeen constants a2, a3,' .. , alO, b3, b4, . .. , blo may now be determined by
the procedure just described and expressed in terms of C2, C4, C6 as follows

a2 =- Ct.Z6,
a3 =- (C4Z6+Ct.Z4),

a4 =-2a2'
a~ =- C2Z6+ C4Z6- C6(Z2 - Z4 - 2Z6),
a6= - a3,
a, = 4a2/3,
as =- a~,

a,= 2a3,

alO =- b~/3,

b3 = - C4Z4,

b4 = - a3,

b~ =- C2Z4- CJZ2 - 2Z4- Z6) +Ct.Z4,

b6 =-2b3,

b, =- a~/3,

bs =2a3,
b,= - b~,

blo =4bJ3.

(6.8)

Numerical results for positive, zero and negative Gaussian curvature are presented respec­
tively in Tables 3-S for a specimen shell trillJllDlar element which projects onto the OXY plane
as an equilateral triangle with side length 2 units. The tables list values of the displacement
components Ux, Uy, Uz at all six nodes, see F'1g. S, as well as values of the rotation cf>i and

Table 4. Values of the physical quantities for specimen triangular element with zero Gaussian curvature

Sida _a Ux Uy Uz .' kit kh lti2·K21 k2:uDI

I ° ° 0 -1.132 0.6246 1.974 1.110 1.961
I 2 0 -0.1540 1.000 0 0,6667 2.000 1.155 2.000

3 0 -0.3079 0 1.132 0.6246 1.974 1.110 1.961

3 0 -0.3079 0 1.132 0.6246 1.'74 -1.110 1.961
2 4 0 -0.1540 1.000 0 0.6667 2.000 -1.155 2.000

5 0 0 0 -1.132 0,6246 1.974 -1.110 1.961

5 0 0 0 2.309 2,598 0 0 0
3 6 0 0 0 2.309 2.598 0 0 0

I 0 0 0 2.309 2.598 0 0 0

Sida _a Ux Uy Uz .' Kit kh a:i2' 1Ci. k2:uDI

I 0 0 0 -1.132 -1.974 1.974 -1.199 1.961
I 2 0.0667 -0.1155 1.000 -2.309 -2.000 2.000 -I.ISS 2.000

3 0.5333 0 0 -3.397 -1.974 1.974 -1.199 1.961

3 0.5333 0 0 3.397 1.'74 -1.974 -1.199 -1.961
2 4 0.0667 0.115 -1.000 2.309 2.000 -2.000 -1.155 -2.000

5 0 0 0 1.132 1.974 -1.974 -1.199 -1.961

5 0 0 0 -2.309 0 0 2.309 0
3 6 0 0 0 0 0 0 2.309 0

I 0 0 0 2.309 0 0 2.309 0
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Table So Values of the physical quantities for specimen trianpIar element with neptive Gaussian
curvature

51.. - Ux uy Uz .' <j I <22 ICj2 '1ItZt <Z2AOI

I 0.1778 0 0 0.4610 1.461 2.071 0.lS17 1.961
I 2 0.1000 -0.1989 1.000 0.7698 1.545 2.013 0.3149 2.000

3 0.0119 -0.3592 0 1.132 1.560 1.974 0.3405 1.961

3 0.0119 -0.3592 0 1.132 1.560 1.974 -0.3405 1.961
2 4 0.0778 -0.1989 1.000 0.7698 1.545 2.013 -0.3149 2.000

5 0 0 0 0.4610 1.461 2.071 -0.2517 1.961

5 0 0 0 1.600 2.152 1.311 -0.011I 1.307
3 6 0.0119 -0.0770 0.6667 1.540 2.100 1.411 0 1.333

I 0.1778 0 0 1.600 2.152 1.311 o.oaaa 1.307

S1M .... Ox Uy Vz .' lei. <22 <iz·<z. <Z2AOI

I 0 0.3079 0 -1.042 -1.774 2.071 -1.211 1.961
I 2 -0.1667 0.0577 1.000 -2.309 -1.917 2.013 -1.155 2.000

3 0.2667 0.1540 0 -3.397 -0.974 1.974 -1.199 1.961

3 0.2667 0.1540 0 3.397 1.974 -1.974 -1.ltt -1.961
2 4 -0.1667 0.2502 1.000 2.309 1.917 -2.013 -1.155 -2.000

5 0 0 0 1.042 1.774 -2.071 -1.211 -1.961

5 0 0 0 -2.355 -0.2'71 0 2.309 0
3 • 0 0.1540 0 0 0 0 2•• 0

I 0 0.3079 0 2.355 0.2971 0 2.309 0

curvature changes Ki .. Kn. Kb =K21 at vertex and central nodes along each side of the triangle.
These quantities refer to orthQlonal coordinates fi. Ei where fi is the outwards pointing normal
to the particular side. The arcs which form the curved sides have nearly constant radii of
curvature with RA =5 and 5.3 units at the side and vertex nodes respectively. see eqn (5.10);
these arcs subtend an angle of approx. 22.5° (in finite element analysis it is usually recom­
mended that the element subtends an anaJe no are&ter than Un The last column in each Table
lists values of the arc curvature chaqe K22AO of eqa (4.31) where the qreement to within 1% of
the physical curvature chaqe Kn is noteworthy for the elements with non-neptive Gaussian
curvature. This should not. however, be taken as a recommendation to employ arc curvature
change other than qualitatively.

7. INEXTENSIONAL BENDING SOLUTIONS IN TERMS
OF POLYNOMIALS OF ARBITRARY DEGREE

The main purpose of this paper was to develop inextensional bending solutions for Ux. Uy,
Uz displacements in terms of low dearee polynomials in the surface coordinates fl and Ez. It is.
however. possible to write down exact closed form solutions in terms of homogeneous
polynomials of arbitrary degree. Such solutions to eqns (6.1) are, for integer n > 2,

4
Ux =- XI {-2Z6fl +(Zz- Z.-ZJfZ+Z6}UZ

+...!...{Z.C"-I+(Z -Z -Z' }1:,,_8Z6~ 1 C.I:,,-I+II:I-I
nX

l
n-I z 04 6/

C" ~2 XI f-I n - i +1 Iii I liZ'

Uy =-~: Ux - :3 {(Zz-Z.-ZJEI-2Z.fz+Z.}Uz (7.1)

8 {Z6CZ (Z Z Z',}I:" 8Z.~ 1 I:,,-j I: i+-Y --1+ z- 04- 6/CI iii --Y ~~CI"'I "'Z,
n 3 n - 3 i-I I

"U - ~ C,I:,,-il:i-I
z-~ ;"'1 li2 ,

i-I

where the constants c.. Cz, ... , ell are subject to n - 2 conditions expressed by eqn (6.6) but are
otherwise arbitrary.
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For n = 3 the solutions of eqns (6.2) with (6.8) agree with eqn (7.1) apart from a rigid body
movement.

When n = 4. for example. then

Ux = - ;J-2Z"~1 + (Z2- Z4 - Z")~2+ Z,,} Uz

2 {Z4Cl (Z Z Z) } l: 4 8Z"~ 1 ,l:~-il:i-I+- --'+ 2- 4- "C4 ~2 --~ --. C~'I ~2 ,XI 3 X1i=15-1

Uy = - ~~ Ux -: {(Z2- Z4- Z")~I- 2Z4~2+Z4}UZ
~ ~

where eqn (6.6) requires that

3Z4c1+(Z2 - Z4 - Z6)C2 +Z6C3 =0,

Z4C2 +(Z2 - Z4 - Z6)C3 +3Z6C4 =O.

(7.2)

8. CONCLUSIONS
The strain/displacement and curvature change/displacement equations of first approximation

shell theory are stated in terms of an arbitrary orthogonal system of curvilinear surface
coordinates. These equations form the basis for evaluation of the physical quantities in any
chosen direction and are then related to the equations of an arbitrary oblique curvilinear
coordinate system.

Particular equations are derived for a class of shell triangular elements in quadratic
parametric representation. Closed form polynomial exact solutions.to the inextensional bending
problem are presented with specimen numerical results; the cubic polynomial solutions cor­
respond to curvature changes which, although not generally constant, are slowly varying for the
shallow shell elements usually encountered in finite element analysis. The triangular element
may have positive, zero or negative Gaussian curvature.
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