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Abstract—Exact closed form inextensional bending solutions are developed for a class of shell triangular
clements in quadratic parametric representation; these elements may have positive, zero or negative
Gaussian curvature. Previous exact closed form inextensional solutions of the equations of thin shell theory
are known, for non-zero Gaussian curvature, only for spherical surfaces.

The polynomial solutions are relevant to finite element design and provide inextensional bending
behaviours with slowly varying curvature changes ready for use in patch test validation of any shell finite
¢lement.

1. INTRODUCTION

A study of the equations of first approximation shell theory[1-3] reveals that the theory admits
four characteristic solution modes which correspond essentially to rigid body movements,
momentless membrane stresses, inextensional bending and edge effects. In well designed shells,
the membrane mode usually produces the dominant fibre stresses with inextensional bending
making significant contributions only to the deformation state. Edge effects decay rapidly away
from discontinuities and it is customary to consider them in isolation from the other modes. Of
the first mentioned modes, it is the problem of inextensional bending which has provided one of
the most difficult obstacles in developing a wholly satisfactory curved finite element within first
approximation shell theory[4, 5.

Closed form exact solutions for the displacements of inextensional bending in shell surfaces
with non-zero Gaussian curvature are known (to this author) only for spherical surfaces[6].
Thus, a primary objective is to develop such solutions covering a much wider range of surfaces
which may have positive, zero or negative Gaussian curvature. The polynomial form adopted
for the solutions is relevant to the techniques of finite element analysis and provides in-
extensional bending behaviours ready for use in patch test{4] validation of any shell finite
element. Indeed, 2 Fortran computer program which calculates displacements, rotations and
curvature changes from the cubic polynomial solutions is described elsewhere[7].

The technique of polynomial parametric representation of the rectangular cartesian coor-
dinates is widely employed in the finite element method to describe curved surfaces and/or
boundaries. When the rectangular cartesian components of displacement are also parametrically
represented by the same polynomials then the representation is called isoparametrici8,9).
While isoparametric representation admits exact recovery of the rigid body movements, it does
not provide an acceptable description of the bending of curved surfaces because its bending is
accompanied by middle surface strains which have significant magnitude and cannot be ignored.
In contrast, the bending solutions presented in the sequel correspond to zero middle surface
strain. They are derived by extending the polynomial degree of displacement representation for
a class of triangular elements with doubly curved shell surfaces which are parametrically
represented in terms of quadratic polynomials of the surface coordinates. The element class is
characterised by the planes of the quadratic arcs which define the sides, these planes intersect
along three parallel lines. The present purpose is adequately served by assuming that these
parallel lines are normal to the plane which passes through the vertices of the triangular element.
This assumption offers presentational simplification but is not essential to the method and form
of solution.

The analysis is embedded in the strain/displacement and curvature change/displacement
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equations of first approximation shell theory[1-3] and it is convenient to commence with a
statement of the relevant vector equations in terms of an arbitrary orthogonal system of
curvilinear surface coordinates. These equations form the basis for evaluation of the physical
quantities in any chosen direction and are then related to the equations of the oblique
curvilinear coordinate system belonging to the parametric representation. Particular equations
for the shell triangular element are derived prior to a study of the quality of the physical
quantities when they are described isoparametrically. Closed form exact polynomial solutions
to the inextensional bending problem are then presented with specimen numerical values; the
cubic polynomial solutions correspond to curvature changes which, although not generally
constant, are slowly varying for the shallow shell elements usuaily encountered in finite element
analysis.

2. GEOMETRY AND KINEMATICS IN ORTHOGONAL CURVILINEAR COORDINATES
Let X, Y, Z refer to a fixed right handed orthogonal cartesian coordinate system and denote
by vector r the position of a point on the middle surface of the thin walled shell so that

r=Xe + Ye, + Ze, 2.1)

where ¢, e,, ¢; are unit vectors in the X, Y, Z directions respectively. Let the middle surface be
defined by orthogonal curvilinear coordinates £i, &3, see Fig. 1, so that

X=X(&,6), Y=Y, &), Z=Z(¢&, &) (2.2)
Unit vectors ¢}, ¢; tangent respectively to the £|, &5 directions are given by

_Llar

—'a_{' ag;v t2= Yy (2-3)

t

Curvature changes and rotations

R " N i
£t Y € 1, 2

Strains and displacements

Fig. 1. Kinematic quantities in the orthogonal curvilinear coordinate system on the middle surface of shell
triangular element.
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where the coefficients a, a} of the first fundamental form are calculated from

s

o =

(2.4)

, arl

LA
&l M7 g

The unit vector »

B=1tX13 (2.5)
is perpendicular to the plane of t; and t; with direction such that the orthogonal vectors t;, ¢3, »
form a right handed system. The radii R{, R; of curvature of the middle surface along lines of

respectively constant £5 and £ are given by

1 1 at; 1 1 6!5
SN L4 WSO I .- § 2,
RI™ @™ R ajoe” 26)

1 1 at3 1 ot
A1 1o 27
Ri; a1 3§ X 3) " @7

If 1/R}, = 0 then the curvilinear coordinates £}, &3 follow the lines of principal curvature of the

shell middle surface.
Let the displacement vector U be defined by

U= Uxel + Uyez+ Uz¢3 (2-8)
with
Ux = Ux(€ &), Uy = Uyl &), Uz=Ugg;, £)." 2.9)

where Uy, Uy, U; are components of displacement in the orthogonal X, Y, Z directions
respectively. The displacement vector U is usually defined

U=Uiti+ Uiti+ Wn (2.10)

where Ui, Uj, W are respectively components of displacement in the £, £5 and surface normal
directions, these components may be calculated from

Ui=U-t;, Uy=Ut;, W=U:n. (2.11)
The components €, €2, €1, of direct and shear strain in the £], £5 coordinate system are

=l 10U
1t ;BE' 1s 2= 2a§I 2y (2.12)

, 13U 19U
612 ( '05’ 2+ 26&2‘)

The rotation vector @ is introduced by

@ =—¢ati+ dit2+ ¢un (2.13)
with
o1 aU o _ 18U,
o P ag b2 ol 3E n 2.149)
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and with rotation ¢, about the surface normal

171 U 13U
n = (a‘ag" a3 96, “) 2.15)

The components of curvature change are given by

= 1 ail’“ = 1 61’.‘,
12= |3§' 1 1= Iafl 2 (2 16)
1o, . _13® '
2.

!
- Kn=—777r by Ka=T73%7
as o8 " a3 3¢;

When the strains €],, €5, €i; in the shell middle surface are all zero then the equations of
compatibility provide the following relationships

9., a ., d d
?(alxll)’:’?(alel)_"n a;,' Ki2 a‘;,z=0,

6a|_0

gl (aZKZZ) BE' (alkll) Kll agv KZl agl (2.17)

K“+,I((n+Rl (kiz+ k) =0,
1 R

K=k =0,

where x1,, k22, k{2, k3, are here the curvature changes of inextensional bending.

3. OBLIQUE CURVILINEAR COORDINATE SYSTEM
In the parametric representation employed in the sequel, the middle surface of the shell is
defined by curvilinear coordinates &, & which are no longer orthogonal. Thus,

X = X(gly EZ)’ Y = Y(El’ EZ), Z = Z(El) 62) (3°l)
instead of eqn (2.2). It is therefore required to express the physical quantities of the orthogonal

coordinate system £, £; in terms of these oblique coordinates.
Unit vectors t,, ¢, tangent to the §,, £, directions are given by

1 ar 1 or

t = .
" a 08 L= a; ; (32)
where the coefficients of the first fundamental form are calculated from
=|ér =|or
a = , Qy ale' (3.3)
These unit vectors include an angle B, see Fig. 2, where
tieta=cos B, 0<B<m.
I‘l X tzl = sin B. ] (34)

The vector t] of the orthogonal coordinate system is taken to include an angle A with the vector
t 1]

ti-hy=cos A. (3.5)
Since
)-8, = cos B_+_X
tty=sin A, (3.6)
3t = sin m,
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R
LI

Fig. 2. Orthogonal and oblique coordinate systems.

see Fig. 2, it follows that

fHh=——( smB+A—l2s1n A),

sin 8
= ;—-E( ~t;co8 B+ A+1c08A), 3.7
= sin B smp X0

where n is the same vector as in eqn (2.5). It follows also that the rule for differentiation is

138 —_ 14
Q; f; 1 smB-H\ -sinA a|a§|
T sinB (3.8)
19 N 1
o) 984 ~cosB+A cos A as 06>

Quantities ¢,;, €x, €}, in the oblique ¢, &, coordinate system are introduced by
1 U
ag AP TR

1 U 1aU
1 E(I,BE" +¢!2 & ‘)

Gn"'—

(3.9

These quantities may be termed “components of strain” since the strain of the middle surface is
completely defined in terms of them; they are related to the orthogonal components ¢};, €, €1»
through

—J:'E(Gn sin’ﬂ+)¢ +€zzSinzA —2€,8in A sin B+ A)
€h —m}zz(e,, cos? B+ A+ €xncos’A —2€;cos A cos B+ A) r (3.10)

eu—-s—“—\zg{ e,.s1np+)\cosB+A €xSin A COS A

+€15(sin A cos B+ A +sin B + A cos A)}

Note that €, €» are true direct strains in the £,, £, directions, e.g. with A =0, #/2-8
respectively.
In like manner, quantities ¢,, ¢, may be introduced by

¢|=—m‘—x—la—§l-n, ¢2=—ma—2~5€-n (3.1‘)
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which are related to the orthogonal components ¢1, $5 by

di=¢sinB+A—¢ysinA, d3=—¢;cos B+ A+d,co8A. (3.12)

The rotation ¢, of eqn (2.15) may alternatively be expressed by

-1 (18U, _ 13U
¢" - 2 sin ﬁ (a| 361 2 a3 3fz ‘l) (313)
and the rotation vector @ of eqn (2.13) by
d=- ¢2‘| + ¢|‘2+ ¢,|II. (3.14)
QIIantities K11, K22, K12, K21 Ar€ introduced by
-y = l-a!. ' K - l ﬂ. ‘
12 a agl 1s 1 a, af] 2
(3.15)
2 a; agz 1 21 a, agz 2y

which are related to the curvature changes of the orthogonal system through

x{,=;—lz—(x,.cosksinB+A—xnsinAcosB+A

in°g
+x;sinB+AcosB+A—kysinAcosi),
1 . — . —
Kp=——y=(=KknSinAcos B+A+xpsinf+AcosA
2 SmB 1 2 r (3_16)

—K28in B+ A cos B+ A+ kysinAcosi),

Kiz’ﬁ}rﬁ'{(KH—Kﬂ sin A sinB+A + K2 sinzﬁ +A - K21 sinZA},

K3 =§n!r§{—('(" — K2) COS A COS B+ A — k12082 B + A + Kz COS?A).

The quantities w1, x», K12, K2y may be termed ‘components of curvature change’ since the
curvature changes experienced by the middle surface are completely defined in terms of them;
note in contrast with eqn (3.10), that «,,, k» are not true curvature changes in the ¢, ¢
directions.

4, EQUATIONS OF THE SHELL TRIANGULAR ELEMENT
Consideration is now given to doubly curved shell triangular elements as described in the
Introduction and where the middle surface is parametrically represented by quadratic poly-
nomials in the oblique curvilinear coordinates ¢, &. The six noded triangular element is
depicted in Fig. 3 with all three vertices resting on the OXY plane; the origin of rectangular
cartesian coordinates X, Y, Z is located at node 5 with node 1 resting on the OX axis. The
element class is thus defined by the six nodal coordinates X, X3, Y3, Z,, Z,, Z¢ with

X;=4X\+ X5), Yo=Y,=3Y;,
X.=3Xs, Xs=Y,=Ys=Ys=2,=2Z=2Z=0, 4.1)
Xe=1Xi.
Note, however, that both method and form of solution remain unchanged when the element

class is widened with Z,, Z,, Zs# 0.
The oblique curvilinear coordinates ¢, £, are shown in Fig. 4 with origin at node 5 so that,
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Y
3 Xy, Yy, 0)
(XY, 2;)
4 2 Xy, ¥y, 230
5 ] 1 X
0,0,0} (Xg,0,2¢)° (Xy,0,0}

Fig. 3. Shell triangular element with vertices resting on OXY plane.

on the surface of the triangular element,

side 1 is defined by &+ &= 1,
side 2 is defined by £,=0, 4.2
side 3 is defined by £,=0.

With nodes located at coordinate positions defined by eqn (4.1), the quadratic representation
requires that

X= X1§1 + X3€2,
Y = Y;gz, (4.3)
Z=MZobrbr+ ZutN1 ~ £1- £ + Zebi(1 - &~ £}

and the vector eqn (2.1), which describes the middle surface of the shell element, may now be

£,
LAY
£|l° E'q»ﬁ’ll
(o, ) &
0, 2 [
ide 2 2(3, 1)
Side 1
Side 3
s '3 gzlo 1 X, E,
(0,01 (2, o) 11,01

Fig. 4. Curvilinear coordinates of the quadratic parametric representation.
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written

r=(X\é+ Xsé)e + Yabaeo + {2616+ Zub (1 - &1 - &) + Ze&i(1 — £, — Ed}es. (4.4)
Unit vectors t,, ¢,, tangent respectively to the £,, £, directions, are determined by eqn (3.2),

1or 1

fhh=——= —[X|¢| +4{"ZZ(,§| +(Zz“ ZA— Zb)§2+ Z(,}e:;],
ay afl 431 4.5)
14 1
ty=— LS [Xser+ Yiea+ M(Z,— Zy— Zo)E) — 226, + Z }es),
a0 az
with
a’ =X +16{-2Zt, +(Z,— Z,— VAT A 4.6)

ar’ = Xs'+ Y+ 16{(Z,— Zy~ Zo)E, - 22,6, + 2.,
the trigonometric term cos 8 of eqn (3.4) is given by

Cos B =1t

= Z,'l&‘z (X, Xo+ 16{~ 2Zefs +(Zs - Zu~ ZQbr + ZH(Za - Zu- ZOb1 - 2262+ Z).  (41)

In the sequel, it is required to evaluate physical quantities in orthogonal directions at the
sides of the triangular element. For this purpose, and typically for side 1, introduce new
orthogonal cartesian coordinates X', Y’ lying in the OXY plane

X'={X %X+ XL +{Y =AY, + Y}M",

i 1 (4.8)
Y=={X-3(X+ Xs)}M'+{Y (Y, + Y,)}L’'

where, as in Fig. 5, the origin of the new coordinates is at (X, Y3, 0) and OY’ lies along the
straight line joining nodes 1 and 3; the direction cosines are

L'=—(—Yl—l:;ﬁ’ Mr___(xl;Xs) (4.9)

with distance [’ between nodes 1 and 3 calculated from

1=(X,- X +(Y, - V3" (4.10)

It is necessary to introduce also orthogonal unit vectors ¢; tangential to the curvilinear
coordinate £5 along the side and t{ outwards pointing, as shown in Fig. 5, both vectors also

Fig. 5. Notation along sides of the shell triangular element.
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tangential to the shell surface. The origin of £; is at the side node 2 with the vertices located at
¢;= = 3. The relationship with coordinates £,, £, is

along side 1 £, =1~§5 &=i+¢&,
along side 2 ¢£,=0, &= - &, 4.11)
along side 3 & =3+¢&) &=0.

The typical side 1 is described in terms of the new coordinates by
r'=eses+ Z{1 - 4¢)es 4.12)
where e is unit vector parallel with the straight line joining nodes 1 and 3,
e;=—M'e;+ L'e,. (4.13)

The unit tangent vector ¢; in the direction of £; is
th= s (e ~8Zsie) 4.14)

with coefficient of the first fundamental form

ai =17+ 64Z,2¢5% 4.15)
Since
dr _or % or 3 (4.16)

of; 3¢ a§2 3, 8¢}

it follows that

=8, 0286,
= ion Y g ag b
=—.1-— —1,cO8 B+ A +1;C08 A) “.1n

sin 8

from eqn (3.7). This determines the angle A for the side; formulae useful in the evaluation of
trigonometric quantities cos B + A, cos A, sin B+ A, sin A are listed in Table 1 for each side the
triangular element. Components of displacement Ux., Uy. in the orthogonal X', Y’ directions
are given by

Ux = UxL'+ UyM’,

(4.18)
Uy =~ UxM'+ UyL'.

Table 1. Trigonometric functions involving the angle A expressed for each side of the triangular element

Side cos Bo X cos X sin B sin A .52

a' [
2 1 | 2 2
1 —; oin 8 ;-; sin 8 :; (-ol con SOnz) ;;- (-¢| +a, cos 8) 8} =20, cos f+a,

2 -] -oin 8 -1 ~coe B -:

2

3 -sin B 0 cos 8 1 o)
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In this quadratic parametric representation, the strain components €;,, €, €;; of eqn (2.9)
may be written as follows for the displacement vector U of eqn (2.8),

laU

" 3§| 'a‘l'z[xn 8§x+4{ 226+ (Z,- 2,4~ Zs)fz‘*'zs}auz]:

3
aUx ==+Y; ny +#;(Z2,-Z,- 26~ 22.86:+ 24} 3Uz]

13U 14U
€|2—"(al 35; *ty +a2 6{ t]) b (4.19)

1 aUyx Uy 3Uz
‘zalaz [XS %, +Y3 %, +4(Zy— 24— Ze)t ~ 22452'*‘24}

+ %, SR 2261+ (22~ 20- 206+ 20 52

€ =

_ 1

€ ___._.._.. s =

86 a

Th . 2 f l . l .

{24?+ ze—‘f-,+(z2 - 2055 62} 4.20)

which involves only the displacement U;; this relationship is of significance in the sequel when
solving for inextensional bending. Formulae are listed in Table 2 which give the resolution of
these strains into orthogonal components €}, €2, €i, acting at each side of the triangular
element, see Fig. 5; note in particular that the strain €3, acts in the direction of £; along each
side. When the displacements of an arbitrary rigid body movement,

Ux =a, + 02Y - dsz,
UY =4ay— azX - asZ, (421)
Uz=as+asX +asY,

where a,, ..., a¢ are constants, are substituted into eqns (4.19) then all three strain components
are zero as is required; the representation of X, Y, Z in terms of the surface coordinates £, £,
is given by eqn (4.3). The special displacement form

Ux = a-,X, Uy = a,Y, Uz = a-,Z (4.22)

is of interest because when substituted into egns (4.19) it provides the strain condition

€Eu=€n=4ay, €;3=a7C08%8, {4.23)

Table 2. Strain components €, €%, €}, for each side of the triangular element as shown in Fig. §

Side e 2 iz
] 2 1
c  {~a cos B+a,) 3: a,(a, cos 8-a3,)
ui! vinls {” ! 2 \ ‘i! ey AT 2
1
1 +* 4:12(-41l +a, cos 8) ;—!- (t“ -2t|z ) €9y 2(u ~a, cos [}]
2
2,2 2 .
- 2:12{(«:‘ 0-2) cos l*uluzﬂ +cos a)}] eu( 1 2)!
1 2 b (e
2 prm (2 gz cons =22, con 5) ‘22 oy AR TR ATy
2 i -
3 ::!-a- ( 11 <00 8‘:22-21 cos B) L ow {c” cos 8 :12)
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where use is made of eqns (4.5)-(4.7). Substitution of eqn (4.23) into Table 2 then shows that

€N=€np=0; €n=0; 4.24)

this constant strain condition is accompanied by zero rotations ¢, ¢3, ¢, as well as by zero
curvature changes k};, k%, K12, K3, it is independent of the angle A.

It is impracticable to write down explicit expressions for the curvature change components
K11, K23, K12, K21, S€€ eqn (3.15), in this quadratic representation. Instead, a simpler concept of
arc curvature change, denoted k3,4, is introduced and used in the sequel to assess the quality of
curvature change deformation. Typically for side 1, the vector eqn (4.12) describes a plane
quadratic arc with unit tangent vector ¢; given by eqn (4.14). The unit vector which lies in the
plane of this arc, the osculating plane, and which is normal to ¢; is

de; t
m=-30/ [Sa| = 2y 62sses + lueo “29)

The sense of this vector n, corresponds with that of a as given by eqns (2.5) and (3.7). The
vector equation for displacements in the plane of the arc is

Ups=Uyes+ Ugze, (4.26)

where Uy is expressed in terms of Uy and Uy by eqn (4.18); the rotation ¢3, of the arc in its own
plane is

din= - Gom == op (026 or+ 1 GE). @)

see eqn (2.14). The arc curvature change k1, is therefore

12822252 dUy  ,,dUz) 1 dUy- , Uy, ., Uz
(82252 d&; +1 df') a (822 aE; +822§2?£—,T+I df') (4.28)
see eqn (2.16). Since
, 1 (,dUy dU,
en=n (1 GF - 82:6: ), “29)

the slope ¢340 for inextensional deformation €5 = 0 is, on making use of eqn (4.15),

) o= 1dUz
¢2A0- II dfi (4-30)

with corresponding arc inextensional curvature change

. &
K240 = aél'd—ﬁ’-° (4.31)

The coefficient a5 is nearly constant for a side with shallow arc, a5 =1’ see eqn (4.15), and x40
then tends to the same value of curvature change calculated according to Mushtari-Vlasov[10]
shell theory. Care is required, however, if the concept of arc curvature change is used other
than in a qualitative sense.
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5. ISOPARAMETRIC REPRESENTATION OF THE DISPLACEMENTS
Suitable representation of the displacement components Ux, Uy, Uz of eqn (2.8) is
important when considering satisfactory applications to the finite element method. If these
components are represented isoparametrically by complete quadratics of the coordinates £,, &,

Ux s [Ai
[UY} = 4 [B:}Nt(fl, &) 6.1
UZ i=] C.'

where Ni(£,, £,) are shape functions defined as

Ni=§(26-1), Ni=4&(1-£6-§&),
Ny=48i&, Ns=(1-§-6)(1-2¢,-28) 5.2
N3=§£(Q26,-1), Ne=4£(1-6- &),

then recovery of six arbitrary rigid body movements is admitted, eqn (4.21), as well as twelve
separable states of combined strain and curvature change which include the special constant
strain condition expressed by eqns (4.22)-(4.24). Note that independent states of constant strain
€1, €3, €] are not admitted by this representation, see eqn (4.19) and Table 2.

The present purpose, however, is to demonstrate that the quadratic isoparametric represen-
tation of eqn (5.1) does not lead to a satisfactory description of curvature change, in-
dependently of middle surface strain, for curved shell elements. Examine the kinematics in the
plane of the arc formed typically by side 1, see Fig. 5. Components of displacement Uy, Uz in
this plane are represented by, see eqns (4.9), (4.18), (5.1),

{UY,}s[—M" L OB B B [‘%ﬁl;;zfg]‘

’ ’ ' _f'(1—2§')
-[o & ot 1w J 63
R N (L 423

An equivalent form of representation, more coavenient for the present purposes, is

Up= b+ baY' + (b= 25,
5.4
Uz=c +c,Y' +(baZ,+cs) Zé'
2
where, see eqn (4.11),
Y'=Ut), Z=2Z(1-4&). (5.9
Substitution of eqn (5.4) into eqn (4.29) gives
ter 2
h=by- i OB (5.6

substitution into eqn (4.27) gives the in plane rotation ¢34 of the arc as

, _ 64byZ,¢8 8c;lé;
e 3 57
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while substitution into eqn (4.28) gives the arc curvature change as

2g0 02 _ 201
Ka = l28b;?}l §2+ 803’ (, 6422 522) (5.8)

3}
2 as

Coeflicients b,, c,, ¢, are seen to control the rigid body movement of the arc in its own
plane, while the term with coefficient b, provides a constant value of the strain €2, along the
side with zero rotation and curvature change, see eqns (4.22)-(4.24).

The term with coefficient b, describes a strain €3, which is antisymmetric in £3; this strain is
accompanied with an arc curvature change xna, sec eqn (5.8). Note here that a curvature
change xn4 provides maximum fibre strain x4h/2 where h is the wall thickness of the shell
element. For this term,

kpahl2 _ _(128b:Z,1"83/asX2) _ _ b

Giz 8b;l'§£/aiz RA (59)
where R, is the radius of curvature of the arc,
1 __1ds 8z
R~ aldE = o7 (5.10)

on making substitutions from eqns (4.14) and (4.25). Now, because of the underlying Love-
Kirchhoff assumptions in first approximation shell theory, it is not possible to calculate fibre
strain (or stress) to within a relative accuracy closer than h/R, see Koiter[1], with R any radius
of curvature or torsion of the reference surface. Equation (5.9) shows that the fibre strains from
the accompanying (and unwanted) curvature change x», of the coefficient b, in eqn (5.8) are
therefore of no consequence in the context of fibre strain accuracy.

This leaves available the term with coefficient c; to describe the arc curvature change 3,
but this is accompanied with unwanted middle surface strain, eqn (5.6), where

€n _ _16¢c Z,jas? zéé
K 224h/2 (8c,l';/a§5)h/2 h (5.11)
with the physical quantities evaluated at appropriate values of £;. For

Z b
h éRA, (5.12)

see eqn (5.9), the angle (8Z,/R4)"” which is approximately subtended by the arc is somewhat
less than 0.33° for say h = 0.04 and R, = 10. In a more relaxed criterion,

%so.l, (5.13)

the arc subtended angle can increase to about 1.6° for the same values of h and R,. The
geometrical constraints are so severe that adequate description of independent curvature
change for a curved shell element is seen to require a form of representation for the
displacement components Uy, Uy, Uz which embodies inextensibility, €}, = €2, = €1, =0, of the
middle surface.

6. INEXTENSIONAL BENDING IN TERMS OF CUBIC POLYNOMIALS
The components e, €1, €;; of eqn (3.9) completely define the state of middle surface strain
throughout the shell element. Inextensibility is therefore governed by the three partial differen-
tial equations of first degree in Uy, Uy, U, which are obtained from eqn (4.19) by enforcing

(1126”"-‘0, 032622=0, 2&;&26;2=0. (6.1)
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Solutions to these equations are sought in the form

Ux = -liﬁ- (@261 + 36z + aulr* + aséiba + asly’

+ 016" + g€’ ba ¥ aoki) + areky),

Up = ~S2 Uy +8 (bt + et + bstifi + bets? 62)
Y, XY,

+ bat’ + befi’ba + bofifa + brokr’),
Uz =4C16+4CE(1 - £ - £ +4CeE(1- - &), |

where the U, displacement is set to zero at the vertices of the triangular element, ie
Uz=0 atnodes 1,3,5 6.3)

see Figs. 3 and 4. An arbitrary rigid body movement parallel to the OXY plane,

Usee = 1%((:. - bat),

Ursa = =35 Usaa + 7 (b1 + bs6)

6.4

see eqns (4.21) and (4.3), may be added to eqn (6.2) without affecting the curvature changes.

The twenty constants a,, as,..., ds, bg, b“...,bw and Cz, C4, Cg are determined by
substituting eqn (6.2) into eqn (4.19) to derive quadratic expressions for the strain quantities
a2, as’eyn and 2a,az€1; oquating these expressions to zero, eqn (6.1), provides eighteen
conditions and hence two inextensional bending solutions. The numerical results, given later,
indicate that these solutions correspond to slowly varying values of the curvature changes for
relatively shallow triangular elements such as are encountered in finite element analysis. A
curved shell can support only two, ie not three, such separable inextensional bending
behaviours because the compatibility condition, see eqn (2.17),

x

+Xz,

R =0 6.5

I

2Kz
R

kad

-

Tabie 3. Values of the physical quantities for specimen triangular element with positive Gaussian curvature

1
Side Node Uy vy u, 9 :i : ‘iz ‘;2"51 xiw
1 [os3m | o 3 -s.752 | -1.870 | 197 | 3.509 | 1.961
1 2 | o300 | -0.2887 | 1,000 | -2.309 | ~1i987 | 20013 | 3aes | 20000
3 | 0.2667 | ~0vést19 | o 1032 | -2c82 | 1097 | 3420 | taees
3 | 0.2667 | 0.a619 | o 32 | -2.82 |t | -3.420 | 1961
2 4 | 02333 | -0lz887 | 1.000 | -2.309 | -17987 | 20013 | -3l46s | 2000
s Jo ° -so7s2 | <1870 | vlova | -3isos | 1.961
s o 0 0 4.620 | 4.051 | -3.987 | -0.0888 | -3.922
3 6 | 0.2667 | -0.2300 [ -2.000 | 619 | 3l974 | -a.027 | o ~4.000
1 j o3| o 0 4.620 | 4.051 | -3.947 | o.0888 | -3.922
L] L]

Side | Node Uy Uy U 4 “h f2 | S22 | “32a0
1 | o <.3079 | o -1.223 | -z.00 | 1.9z [ i 1.961
| 2 | 0.300 | -0.2887 | 1.000 | -2:309 | -1i987 | 2i013 | -iliss | 20000
3 | oisooo | -0.ise0 | o 232397 | -1i976 | tlo7a | -il199 1961
3 | o.s000 | -0.1560 | 0 3.397 | 197 | -t.o7 | -1i199 | 1968
2 o | 03000 | -olotez | -1.000 | 239 | tisa7 | -2i013 | -iliss | -2.000
s |o o 1,223 | 2078 | -1i97 | - | -ilsen

5 |o 0 o <2355 | o0.1009 | o 209 | o

3 6 |o <0.as40 | o 0 0 0 2309 | o

1 |o <301 | o 2.355 | -0.1039 | o 239 | o

Nodal coordinates, see Fig 3, which have non-zero values are )(l =2, x3 -1, Y - /3, lz - ZA - 26 - 0,1,
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must be satisfied by curvature changes of inextensional bending, it is identically satisfied for flat
plates where Z,= Z,= Z,=0. This compatibility condition is refiected in the relationship given
by egn (4.20) where, on making use of eqn (6.1),

{ a‘g_+z(.§+(zz zﬁ)agag} =0. 6.6)

A substitution from the solution form given in eqn (6.2) shows that the constants C,, C,, C, must
satisfy the condition

CAZ:=Z~Z)+ CA—Z:+ Z,~ 2+ C(— Z,- Z4,+ Z)) = 0. 6.7

The remaining seventeen constants a,, as, ..., a5, b3, bs,..., bjo may now be determined by
the procedure just described and expressed in terms of C,, C,, C as follows

a;=— CeZs,
a3=—(CiZe+ CoZ,), by=—CiZ,,
a,=~-2a,, by=—a,,
as= =~ CyZe+ Cils— ClZ,— Z,-2Zy), =~ CyZ4— CAZy=2Z4— Zg) + CeZ,,
Ge= "0, b6 = —2b,, '
a7=4a,3, b;=-as/3,
8=~ as, bs = 2a,,
85 =2as, by=— b,
@o==bsl3, bio= 4by/3.

6.8)

Numerical results for positive, zero and negative Gaussian curvature are presented respec-
tively in Tables 3-5 for a specimen shell triangular element which projects onto the OXY plane
as an equilateral triangle with side length 2 units. The tables list values of the displacement
components Uy, Uy, Uz at all six nodes, see Fig. 5, as well as values of the rotation ¢ and

Table 4. Values of the physical quantities for specimen triangular element with zero Gaussian curvature

1] *

Side | Node Uy Uy v, L} 3 %32 ®120%3, ®32A0
1 ] ] 0 -1.132 0.6246 1.974 1.110 1.961
1 2 [ =0.1540 1.000 (] 0,6667 2,000 1.155 2.000
3 ] ~-0.3079 0 1.132 0.6246 1.97 1.110 1.961
3 0 =-0.3079 (] 1,132 0.6246 1.974 =1.110 1,961
2 4 0 -0.1540 1,000 0 0.6667 2,000 ~1.15% 2,000
5 0 0 (] ~1,132 0,6246 1.974 -1.110 1.961

H 0 0 0 2.309 2,598 0 (4 0

3 6 1] (] 0 2,309 2.598 0 ] 0

1 0 0 0 2.309 2,598 o ] 0

: 1 v

Side Node Uy Uy v, Q; x; 1 39 ‘lz"il &im
1 1] ] (] -1.132 ~1.974 1.97% -1.199 1.961
1 2 0,0667 -0,1155 1.000 -2.309 =-2.000 2 000 ~=1.155 2,000
3 0,5333 [ 0 -3.397 -1.974 1.974 -1.199 1.961
3 0,5333 o [} 3,397 1,974 -1.974 -1,199 -1.96]
2 4 0.0667 0.118 =-1.000 2,309 2.000 =-2.000 ~1.155 -2,000
5 ] 0 0 1.132 1.974 ~1.974 =1.199 -1.961

5 Q 0 0 -2.309 ] 0 2,309 0

3 6 Q [} 0 0 0 0 2.309 0

] 0 0 2.309 0 [} 2.309 [}

Nodal coordinates, see Fig 3, which have non-zero values are )(I =2, xz =1, 13 - ﬂ. 22 - z,. = 0.1,
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Table 5. Values of the physical quantities for specimen trianguiar element with negative Gaussian

curvature

Side | Node Uy Uy v 4 N €22 ] iz | “22m0
] 0.17718 | o 0 0.4680 | 1,461 2,011 | 0.2517 | 1.961
! 2 0.1000 | -0.1989 | 1.000 | o.7698 | 1.s4s 2,013 | o.3849 | 2.000
3 0.0889 | ~0.389z | 0 1132 1.560 1978 | o.30s | 1l961
3 0.0889 | -0.3592 | o 1,132 1,560 1.974 | -0.3408 | 1.961
2 H 0.0778 | -0.1989 | 1.000 o.7698 | 1.sas 2,013 | -0.3849 | 2,000
s 0 0 0 0.4680 | 1.461 2.0n | 02517 | 1.961
s 0 ) 0 1,600 2.152 1,381 | -0.0888 | 1.307
3 H 0.0889 | -0.0770 | 0.6667 | 1.340 2.100 1411 | o 1.333
) 01778 | o 0 1.600 2.152 1380 | o.os88 | 1.307
Side | Wode Uy Uy L H “h €2 | %i2e"21 | *2aa0
1 0 0.3079 | o -1.062 | ~1.774 2,071 | -1.288 1,961
) 2 | 0.1667 | o057 | 1.000 | -2.300 | -1.987 2.013 | -1.138 2.000
3 0.2667 | 0.150 | o -3.397 | 0.9 1976 | -1.199 1,961
3 0.2667 | 0.130 | o 3.397 1.9% | -1.97% | =1.199 | -1.961
2 i | olee7 | oi2%02 | 1.000 2.309 1987 | -2.003 | -1i1s8 | -2.000
s 0 0 0 1.042 17 | -2on | -1l | -iiee

s ) 0 0 2,355 | -0.29m1 | o 2.309 0

3 H ° 0.1540 | o ° 0 H 2.300 0

1 0 0.3 | o 2.355 o29m | o 2.309 0

¥odal coordinstas, sea Pig 3, which heve non-sero values are !l -2, 13 -1, !’ - 13, z2 - l‘ - -z‘ = 0,1,

curvature changes xi,, k1, k{2 = k3; at vertex and central nodes along each side of the triangle.
These quantities refer to orthogonal coordinates £1, £; where £] is the outwards pointing normal
to the particular side. The arcs which form the curved sides have nearly constant radii of
curvature with R, =5 and 5.3 units at the side and vertex nodes respectively, see eqn (5.10);
these arcs subtend an angle of approx. 22.5° (in finite element analysis it is usually recom-
mended that the element subtends an angle no greater than 10°). The last column in each Table
lists values of the arc curvature change x;4 of eqn (4.31) where the agreement to within 1% of
the physical curvature change x3 is noteworthy for the elements with non-negative Gaussian
curvature. This should not, however, be taken as a recommendation to employ arc curvature
change other than qualitatively.

7. INEXTENSIONAL BENDING SOLUTIONS IN TERMS
OF POLYNOMIALS OF ARBITRARY DEGREE

The main purpose of this paper was to develop inextensional bending solutions for Uy, Uy,
U, displacements in terms of low degree polynomials in the surface coordinates £ and £,. It is,
however, possible to write down exact closed form solutions in terms of homogeneous
polynomials of arbitrary degree. Such solutions to eqns (6.1) are, for integer n > 2,

Uy = __4.{.. 22\ + (2o~ 24—~ Ze)62+ 2} U,

8 (Za- 826 ni+1pi-1
+ B (Bt (2 2,- Z0c o - SR S oy kT

Ur =3 Ux - 54~ 2= 2061~ 22uks+ 23Uz S AV

{Z°c’+(zz-z4—zac.}5." 82‘2 T 8

=2 ciTEr

i=l

Pl Yg

where the constants ¢, C,, .. ., C, are subject to n ~ 2 conditions expressed by eqn (6.6) but are
otherwise arbitrary.
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For n = 3 the solutions of eqns (6.2) with (6.8) agree with eqn (7.1) apart from a rigid body
movement.
When n = 4, for example, then

Uy = _i{ 226+ (22~ Z, - Z) £, + Z} Uy

X
o)
+XLl{Z“‘+(z~ - Z)c )& —S—Z“g,l i,
Uy =- § Uy -%{(zz— Zo~ ZOE - 22462+ ZJU, (1.2)

+ -}-;;{Zﬁ—c" +(Z,- 24— Z6)cl} gl‘ 8Z‘ ,2 cié |_i§2is

Uz = Ci& + b Poa+ Cafaé’ + Cafs's

where eqn (6.6) requires that

3Z4C‘ + (Zg - Z4 - Z(,)Cz + 26C3 = 0,
Z4C2 + (Zz - Z4 - Zﬁ)C3 + 3ZﬁC4 =0,

8. CONCLUSIONS

The strain/displacement and curvature change/displacement equations of first approximation
shell theory are stated in terms of an arbitrary orthogonal system of curvilinear surface
coordinates. These equations form the basis for evaluation of the physical quantities in any
chosen direction and are then related to the equations of an arbitrary oblique curvilinear
coordinate system.

Particular equations are derived for a class of shell triangular elements in quadratic
parametric representation. Closed form polynomial exact solutions.to the inextensional bending
problem are presented with specimen numerical results; the cubic polynomial solutions cor-
respond to curvature changes which, although not generally constant, are slowly varying for the
shallow shell elements usually encountered in finite element analysis. The triangular element
may have positive, zero or negative Gaussian curvature.
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